Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Redetermination of hexacarbonyl(η^5 -cyclopentadienyl)bis(μ_3 -selenido)diiron(II)-cobalt(II)

Virovets and Konchenko

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C **Crystal Structure** Communications

ISSN 0108-2701

Redetermination of hexacarbonyl- $(\eta^5$ -cyclopentadienyl)bis $(\mu_3$ -selenido)diiron(II)cobalt(II)

Alexander V. Virovets* and Sergey N. Konchenko

Institute of Inorganic Chemistry SD RAS, Ak. Lavrentiev prosp. 3, Novosibirsk 630090, Russia Correspondence e-mail: vir@che.nsk.su

Received 31 July 2000 Accepted 8 August 2000

Data validation number: IUC0000211

The structure of the title compound, hexacarbonyl- $1\kappa^3 C_2 \kappa^3 C_2$ $[3(\eta^5)$ -cyclopentadienyl]bis(μ_3 -selenido)diiron(II)cobalt(II), $[CoFe_2(\mu_3-Se)_2(C_5H_5)(CO)_6]$, was redetermined at room temperature and the correct C2/c space group was assumed instead of the previously reported $P\overline{1}$ space group [Mathur et al. (1995). Organometallics, 14, 2115-2118]. Analysis of the literature data showed that the previously reported triclinic parameters correspond to a primitive subcell of the actual monoclinic C-centred cell with cell dimensions close to those found by us. The title compound appeared to be isostructural with the sulfur-selenium analogue.

Comment

The crystal structures of two compounds with similar composition, *i.e.* $(\mu_3$ -S)(μ_3 -Se)Fe₂CoCp(CO)₆, (I), and $(\mu_3$ - $Se_2Fe_2CoCp(CO)_6$ (II), have been published (Mathur *et al.*, 1995). Usually similar compounds are isostructural but in this case, the reported space groups were different, with C2/c and Z = 8 for the former, and $P\overline{1}$ and Z = 4 for the latter. We had a good crystal of compound (II) and redetermined the structure.

We found that the correct space group is C2/c and that (II) is actually isostructural with the sulfur-selenium analogue (I). Further analysis of the literature data revealed that the unit

cell found in 1995 for (II) corresponds to a primitive triclinic subcell of the actual monoclinic C-centred cell with parameters close to those found by us [a = 35.06 (1), b = 6.638 (1),c = 14.675 (4) Å, $\alpha = 90.12$ (2), $\beta = 111.75$ (3), $\gamma = 89.92$ (2)°, transformation matrix $[\overline{102}; 100; 0\overline{10}]]$. The atomic coordinates of the triclinic determination transformed by the corresponding M^{-1T} matrix, applying the origin shift of $(\frac{3}{4}, \frac{1}{4}, \frac{1}{2})$, gives practically the same atomic coordinates as were found in our investigation. Two independent molecules in the triclinic cell are actually related by twofold axes.

The s.u.'s in our investigation are better than in the previous determination probably due to the avoiding the correlation effects.

The situation when the monoclinic structure is solved in triclinic subcell is not unusual. A good review was published on the subject by Marsh (1995).

Experimental

The title compound was obtained from the reaction of $(Et_4N)_2[Fe_3(\mu_3-Se)(CO)_9]$ with CpCo(CO)I₂ in tetrahydrofuran. Single crystals were obtained from a saturated hexane solution of the product at 263 K.

Crystal data

$\begin{split} & [\text{CoFe}_2\text{Se}_2(\text{C}_3\text{H}_5)(\text{CO})_6] \\ & M_r = 561.70 \\ & \text{Monoclinic, } C2/c \\ & a = 34.992 \ (4) \\ & \mathring{\text{A}} \\ & b = 6.6249 \ (6) \\ & \mathring{\text{A}} \\ & c = 14.651 \ (2) \\ & \mathring{\text{A}} \\ & \beta = 111.751 \ (9)^\circ \\ & V = 3154.6 \ (6) \\ & \mathring{\text{A}}^3 \\ & Z = 8 \end{split}$	$D_x = 2.365 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 24 reflections $\theta = 9-14^\circ$ $\mu = 7.490 \text{ mm}^{-1}$ T = 293 (2) K Plate, black $0.28 \times 0.24 \times 0.10 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4 diffract- ometer ω scans Absorption correction: ψ scan (modified <i>CADDAT</i> ; unpub- lished) $T_{\min} = 0.141, T_{\max} = 0.473$ 2811 measured reflections 2765 independent reflections	1297 reflections with $I > 2\sigma(I)$ $R_{int} = 0.0543$ $\theta_{max} = 24.97^{\circ}$ $h = 0 \rightarrow 41$ $k = 0 \rightarrow 7$ $l = -17 \rightarrow 16$ 3 standard reflections frequency: 60 min intensity decay: none
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.062$ S = 0.693 2765 reflections 200 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0086P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97

Table 1

Selected geometric parameters (Å, °).

H-atom parameters constrained

Se1-Fe1	2.3569 (14)	Fe2-Co1	2.5467 (16)
Se1-Fe2	2.3583 (15)	Fe2-C21	1.800 (10)
Se1-Co1	2.2853 (14)	Fe2-C22	1.751 (9)
Se2-Fe1	2.3615 (15)	Fe2-C23	1.773 (9)
Se2-Fe2	2.3605 (14)	Co1-C1CP	2.035 (9)
Se2-Co1	2.2870 (13)	Co1-C2CP	2.064 (8)
Fe1-Co1	2.5610 (16)	Co1-C3CP	2.057 (8)
Fe1-C11	1.810 (10)	Co1-C4CP	2.035 (8)
Fe1-C12	1.792 (9)	Co1-C5CP	2.014 (9)
Fe1-C13	1.750 (10)		

Extinction coefficient: 0.00086 (2)

electronic papers

Fe1-Se1-Fe2	97.30 (5)	C11-Fe1-Co1	106.2 (3)
Co1-Se1-Fe1	66.94 (5)	C12-Fe1-Se1	156.6 (3)
Co1-Se1-Fe2	66.50 (5)	C12-Fe1-Se2	89.3 (3)
Fe2-Se2-Fe1	97.11 (5)	C12-Fe1-Co1	102.3 (3)
Co1-Se2-Fe1	66.84 (5)	C13-Fe1-Se1	104.1 (3)
Co1-Se2-Fe2	66.43 (5)	C13-Fe1-Se2	100.1 (3)
Se1-Fe1-Se2	82.25 (5)	C13-Fe1-Co1	146.8 (3)
Se1-Fe1-Co1	55.19 (4)	Se1-Fe2-Se2	82.24 (5)
Se2-Fe1-Co1	55.19 (4)	Se1-Fe2-Co1	55.38 (4)
C11-Fe1-Se1	88.6 (3)	Se2-Fe2-Co1	55.40 (4)
C11-Fe1-Se2	161.2 (3)		

Data collection: *CD*4*CA*0 in *CAD*-4 *User's Manual* (Enraf-Nonius, 1985); cell refinement: *CD*4*CA*0; data reduction: *XCAD* (local program); program(s) used to solve structure: *SHELXS*97

(Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997).

References

- Enraf-Nonius (1985). CAD-4 User's Manual. Enraf-Nonius, Delft, The Netherlands.
- Marsh, R. E. (1995). Acta Cryst. B51, 897-907.
- Mathur, P., Sekar, P., Satyanarayana, C. V. V. & Mahon, M. F. (1995). Organometallics, 14, 2115–2118.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.